Combination preconditioning of saddle point systems for positive definiteness

نویسندگان

  • Jennifer Pestana
  • Andrew J. Wathen
چکیده

Amongst recent contributions to preconditioning methods for saddle point systems, standard iterative methods in nonstandard inner products have been usefully employed. Krzyżanowski (Numer. Linear Algebra Appl. 2011; 18:123–140) identified a two-parameter family of preconditioners in this context and Stoll and Wathen (SIAM J. Matrix Anal. Appl. 2008; 30:582–608) introduced combination preconditioning, where two preconditioners, self-adjoint with respect to different inner products, can lead to further preconditioners and associated bilinear forms or inner products. Preconditioners that render the preconditioned saddle point matrix nonsymmetric but self-adjoint with respect to a nonstandard inner product always allow a MINRES-type method (W-PMINRES) to be applied in the relevant inner product. If the preconditioned matrix is also positive definite with respect to the inner product a more efficient CG-like method (W-PCG) can be reliably used. We establish eigenvalue expressions for Krzyżanowski preconditioners and show that for a specific choice of parameters, although the Krzyżanowski preconditioned saddle point matrix is self-adjoint with respect to an inner product, it is never positive definite. We provide explicit expressions for the combination of certain preconditioners and prove the rather counterintuitive result that the combination of two specific preconditioners for which only W-PMINRES can be reliably used leads to a preconditioner for which, for certain parameter choices, WPCG is reliably applicable. That is, combining two indefinite preconditioners can lead to a positive definite preconditioner. This combination preconditioner outperforms either of the two preconditioners from which it is formed for a number of test problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On nonsymmetric saddle point matrices that allow conjugate gradient iterations

Linear systems in saddle point form are often symmetric and highly indefinite. Indefiniteness, however, is a major challenge for iterative solvers such as Krylov subspace methods. It has been noted by several authors that a simple trick, namely negating the second block row of the saddle point system, leads to an equivalent linear system with a nonsymmetric coefficient matrix A whose spectrum i...

متن کامل

Some Preconditioning Techniques for Saddle Point Problems

Saddle point problems arise frequently in many applications in science and engineering, including constrained optimization, mixed finite element formulations of partial differential equations, circuit analysis, and so forth. Indeed the formulation of most problems with constraints gives rise to saddle point systems. This paper provides a concise overview of iterative approaches for the solution...

متن کامل

Preconditioning of Saddle Point Systems by Substructuring and a Penalty Approach

The focus of this paper is a penalty-based strategy for preconditioning elliptic saddle point systems. As the starting point, we consider the regularization approach of Axelsson in which a related linear system, differing only in the (2,2) block of the coefficient matrix, is introduced. By choosing this block to be negative definite, the dual unknowns of the related system can be eliminated res...

متن کامل

Combination preconditioning and self-adjointness in non-standard inner products with application to saddle point problems

It is widely appreciated that the iterative solution of linear systems of equations with large sparse matrices is much easier when the matrix is symmetric. It is equally advantageous to employ symmetric iterative methods when a nonsymmetric matrix is self-adjoint in a non-standard inner product. Here, general conditions for such self-adjointness are considered. In particular, a number of known ...

متن کامل

Augmentation Preconditioning for Saddle Point Systems Arising from Interior Point Methods

We investigate a preconditioning technique applied to the problem of solving linear systems arising from primal-dual interior point algorithms in linear and quadratic programming. The preconditioner has the attractive property of improved eigenvalue clustering with increased ill-conditioning of the (1, 1) block of the saddle point matrix. We demonstrate performance of the preconditioner on prob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerical Lin. Alg. with Applic.

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2013